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Semiclassical study of particle motion in two-dimensional and 
three-dimensional elliptical boxes: I1 
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t lnstitut des Sciences Nucliaires, 38026 Grenoble Ctdex, France 
$ Laboratoire de Spectromitrie Physique, BP 87, 38402 St Martin d’H?res Cidex, France 

Received 11  March 1986, in final form 25 June 1986 

Abstract. The spectrum of an ellipsoidal box of prolate and oblate symmetry are calculated 
by an exact diagonalisation and by semiclassical methods. The influence of a separatrix 
in phase space is analysed with the help of the W K B  phases derived in an earlier paper. 
Differences between the prolate and oblate L, = 0 states are explained using this separatnx. 
It is found that the EBK method, improved by the uniform approximation, leads to a 
spectrum in very good agreement with the wave mechanical results. The spectrum of a 
two-dimensional elliptical membrane (‘billiard’ box) is also studied with similar con- 
clusions. 

1. Introduction 

In a recent article (Carbonell er al 1985) the classical dynamics of a particle in the 
spherical average field of a nucleus has been analysed. Limiting cases were considered 
(harmonic oscillator, infinite spherical well) as well as potentials of the Woods-Saxon 
type (more precisely the Buck-Pilt version). The geometrical properties of the classical 
energy-action surface were studied in connection with the EBK semiclassical method 
of quantisation. The most significant features of the single particle spectrum were 
explained by local properties of this surface and their evolution with particle number. 
All the cases treated share a common property: the uniformity of the topology of the 
classical phase space. This topology can be characterised by the nature of classical 
caustics; the caustics of the spherical potential relevant to nuclear physics are in general 
two circles (or spheres) which mark the limit of the radial motion. Therefore in the 
semiclassical limit the details of the spectrum and also to some extent the main features 
of the wavefunction (for example the domain where it oscillates) are simply connected 
to the features of the energy-action surface. The introduction of corrections of higher 
order in h introduces only tiny corrections which are not interpretable by using only 
semiclassical mechanics to lowest order. 

The situation is much more complex if we deform the above potentials. For the 
sake of simplicity we will restrict the discussion to the case where the deformation is 
such that the equipotentials are prolate or oblate ellipsoids. 

( i )  The deformed harmonic oscillator is the case of maximum simplicity: the 
potential is still integrable, the semiclassical energies are exact and the topology of 
the caustics is unique. It can readily be seen that the energy-action surface, for each 
specific value of L,, the projection of the angular momentum on the axis of symmetry, 
is a plane that moves as a function of deformation. I t  is the motion of this plane that 
explains the shift of the single particle levels with energy. 

0305-4470/87/051115 + 22$02.50 0 1987 IOP Publishing Ltd 1115 



1116 R Arvieu and Y Ayant 

The harmonic oscillator is the only one in  which the phase space changes 
monotonously with the parameters and where the equation of the trajectories can be 
written simply. For the other potentials it will be convenient to distinguish the planar 
trajectories with L, = 0 which are contained in meridian planes of the ellipsoids from 
the non-planar ones which will not be considered in this paper. 

( i i )  The ellipsoidal cavity with infinite well will be the main object of our study. 
The discussion of this case has been prepared by an earlier paper by Ayant and Arvieu 
(1987, hereafter referred to as I). Its interest lies in the fact that its topology is not 
uniform. Indeed the phase space is divided into two regions by a separatrix. These 
regions evolve differently with the deformation: one decreases in size while the second 
increases. Our intention is to discuss quantitatively how this separatrix manifests itself 
in the spectrum; more specifically, how it helps to explain the oblate-prolate differences 
when it is properly combined with the motion of the energy-action surface with 
deformation. 

( i i i )  The case of the Buck-Pilt potential is much more involved, as was shown by 
Carbonell (1983) and discussed in Carbonell er a1 (1984). Indeed this potential is 
non-integrable. However it has been found (Carbonell 1983) that in a large region of 
the parameter space the phase space is divided into two regions by a separatrix which 
is topologically identical to that of the ellipsoidal cavity. In  that region semiclassical 
quantisation is possible and the ellipsoidal cavity provides a useful system for com- 
parison. It turns out that the energy spectrum of a deformed Buck-Pilt potential is 
very similar to that of the cavity, apart from small but essential modifications like the 
level repulsion. It  seems that the high degree of complexity of the classical dynamics- 
bifurcations, chaos, etc-contributes only to the explanation of these modifications. 
Therefore it is our conclusion that the main differences between the oblate and the 
prolate spectra are found in the discussion of the ellipsoidal cavity. 

Since we found it necessary to discuss the barrier effects for the 'billiard', the 
numerical discussion will also be presented for completeness. 

2. Determination of the separatrix 

We will use the same notation as in Ayant and Arvieu (1987). The semi-axes of the 
ellipsis in which the classical motion takes place are called R ,  and R( and the focal 
distance 21: The ratio 

CL = R , / R ,  (1) 

will be used as our deformation parameter in the interval (1,2) for which the consider- 
ation of the ellipsoidal deformations is the most significant. Our intention is to follow 
the spectrum as a function of p. I t  is conventional in nuclear physics to impose a 
volume conservation. Therefore, if Ro is the radius of the spherical nucleus the 
condition for a prolate nucleus is 

R , R :  = R i  ( 2 )  

(3 )  
In  this manner R , ,  R,  and f have a different variation in a prolate or oblate nucleus. 
In  a prolate nucleus 

and for an oblate nucleus, it becomes 
R'R - ~ 3  

) < -  0. 

R ,  = R,p2/' R ,  = Rap-'/' (4) 
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while in the oblate nucleus 

R,= R,+L' '~ R, = R,, /L-~".  (5) 

With this convention the ellipses corresponding to oblate and prolate nuclei of the 
same p have different semi-axes. 

The two-dimensional case is treated in the same spirit, i.e. we use conservation of 
the surface 

R,R, = R,?,. (6)  

The single particle energy is written as k'/2m and we will use h = 1 .  The classical 
action integrals are defined in the elliptic coordinates 7, 5 and the separation constant 
E as 

' I 1  

I ,  = 1 kf (cosh' 7 - ( E /  kf ) 2 ) " 2  d q  
7r ,I, 

(7)  

The value of 7, is related to the eccentricity of the boundary by 

=cosh- '  R j / J  (9) 

We have two limiting cases: 
( 1 )  elliptic caustics 

7" = cosh-' v%/ kf 5" = 0 ( 1 0 )  

70=0 to = cos-' e/ kf: ( 1 1 )  

( 2 )  hyperbolic caustics 

The integrals ( 7 )  and (8) are combinations of elliptic integrals; their expressions can 
be found in Keller and Rubinow (1960).  Since 7, or &, calculated from (10 )  and 
( 1  l ) ,  define caustics homofocal to the boundary we can write I ,  and It in the general 
form 

where the 5 are functions of the eccentricities of the boundary e and of the caustics 
e, .  We can also write the following inequalities after inspection of the integrals: 

(a )  e o < l  

0 s  I ,  < kfY, (e ,  1 )  = n - ' k f ( e - ' -  1 )  

k f 5 d e ,  I ) <  I e s  kfY6(e,  e ) .  

( 1 4 )  

( 1 5 )  
This last inequality can be written in terms of a complete integral of the first kind 
E (fr, e ) :  
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The value e,,= 1 corresponds to the particular values of the actions 

( I , ) S = ~ r - ’ k s ( e - ’ - l ) f  

(1,)s = 2ksf /P .  

The scaling properties expressed in the forms (12) and (13)  indicate that, e being 
given, e,, is a function of the ratio l , / I t .  On the other hand, (19) and (20) help to 
find the eccentricity e,  of the box for which the states labelled by I ,  and I ,  are found 
on the separatrix 

while (20)  enables us to write k,f right away as 

77 
k, f =-. 

2 4 
Equations (21)  and (22) form the central part of the discussion of this paper. It helps 
to find immediately whether eo< 1 or e,> 1 .  

If e < e, we have 
Suppose that I ,  and I ,  are given and es is calculated with (21) .  

If  e > e ,  we have 

This shows that if a state labelled by I ,  and I( is followed adiabatically as a function 
of e (or p )  it has first a circular caustic when e = 0; it becomes elliptic when p increases, 
it crosses the separatrix es given by (21) and ends up with a hyperbolic caustic for 
e 7  e , .  

(a) Prolate case: the simplest discussion of the separatrix i s  given for the prolate 
case for which we have established in I that 

I , = n + i  I , = / + + .  (23,241 

Using these values we find the corresponding value of e ,  by (21) and of p, by 
1 / ( 1  -e;)”’ as 

Let us consider all the states of same 1. The values of p, found by this formula are 
lower for the higher n. On the other hand, if  we fix the radial quantum number n, pus 
is higher for the high 1. Table 1 provides a numerical illustration of that property for 
a subset of orbits which are occupied in heavy nuclei like Pb. 

The s states present the remarkable property that p s  is so small that the caustics 
are certainly hyperbolic for values of p appropriate to deformed nuclei. At the other 
extreme the lf, lg ,  l h ,  li, etc, orbitals are associated with high values of ps .  The 
picture thus obtained is that in a prolate nucleus we must associate the single particle 
states of low angular momentum with a classical motion with a hyperbolic caustic; on 
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Table 1. The variation of ps with I for fixed radial quantum number. 

Label 

Prolate Oblate 

ERK 1 ERK 1 ERK 0 ERK 0 
PS PS P S C  P S h  

I s  
2s 
3s 
4s 
5 s  
IP 
2P 
3P 
4P 
Id 
2d 
3d 
4d 
I f  
2f 
3f 
Ig 
2g 
3g 
lh 
2h 
li  
2i 
l j  

1.033 
1.008 
1.003 
I .002 
1.001 
1.155 
1.048 
1.024 
1.014 
1.281 
1.100 
1.053 
1.033 
1.400 
1.155 
1.085 
1.512 
1.209 
1.120 
1.616 
1.263 
1.715 
1.316 
1.809 

1.078 
1.018 
1.008 
1.004 
1.003 
1.100 
1.033 
1.016 
1.010 
1.377 
1.125 
1.065 
1.040 
1.316 
1.072 
1.047 
1.637 
1.243 
1.136 
1.512 
1.23 1 
1.863 
1.355 
1.688 

1.033 
1.008 
1.003 
1.002 
1.001 
1.155 
1.048 
1.024 
1.014 
1.281 
1.100 
1.052 
1.033 
1.400 
1.155 
1.085 
1.512 
1.209 
1.120 
1.616 
1.263 
1.715 
1.316 
1.809 

1.155 
1.033 
1.014 
1.008 
1.005 
1.061 
1.021 
1.010 
1.006 
1.512 
1.155 
1.078 
1.048 
1.25 
1.107 
1.061 
1.809 
1.28 1 
1.154 
1.429 
1.203 
2.065 
1.400 
1.591 

the other hand the orbitals with a high angular momentum should be associated with 
an elliptic caustic. 

Figure 1 illustrates the variation of e, with p calculated by the semiclassical method. 
This confirms the universal behaviour described above. It  is noteworthy that formula 
(25)  does not separate the families of even I from those with odd 1. This identity was 
explained in I. 

(b) Oblate case: ( i )  primitive W K B  ( E B K  0). We recall the definition of a, utilised 
in I :  

k 2 f 2 - E '  
2 k f  

a =  

where E'  is a fictitious energy which appears through the variable separation process. 
One is far from the crossing of the separatrix when la/  >> 1; a > 0 means a hyperbolic 
caustic, a < 0 means an elliptic caustic. 

In these limits, paper I gives the quantisation conditions (the primitive W K B  ones): 

a<O I = n + i  I ,  = 1 + ;  (27)  

I , = n + f  I , = l + l  (even 1 )  (28)  
I , = n + l  I( = 1 (odd I ) .  (29) 

It is worth noting that (27) is identical with (23) and (24) found in the prolate case. 

a > o  { 
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4 3s 
2 

3 
1 2 

P 

Figure 1. Eccentricities e, of semiclassical states of the prolate cavity as a function of p. 
For clarity the curves are not drawn in the vicinity of + = 1 since for all of them e ,+O.  

When we are looking for the box eccentricity e, such that an ( n ,  I )  state stands on 
the separatrix using equation (21), we must choose one of the preceding rules, either 
(27) which leads to pse,  or (28) and (29) which lead to pSh whose expression depends 
on parity of 1. On account of the remark concerning (27) psc is identical to pus given 
by (25). On the other hand we obtain 

2 n + 1 + 2  
[ (2n+ 1) (2n+21+3)]”~  

(even I )  p:ll= 

- 2n+1+2  
(odd I ) .  

The different values of p, for the oblate case illustrate one of the well known 
shortcomings of the primitive W K B  rules that we formulate as follows: 

if  1 < p  <pse  there is an elliptic caustic 
if p S h  < p there is a hyperbolic caustic. 

(32) 
(33) 

However in  the even-/ case p s e < p S h .  Therefore in the corresponding interval 
(pSe,  p s h )  there are simply no solutions of the coupled W K B  equations for the variables 
7 and (! In contrast, in the odd-f case pse > p s h  we have an opposite situation and 
therefore in the interval (GSh, pse)  the solution with hyperbolic caustic always exists 
and that with elliptic caustic still exists! There are two candidates with different energies 
which correspond to one level. 
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These deficiencies are known (Ford et a1 1959) to be relieved by the uniform 
approximation where pse and psh coincide. 

Since the primitive W K B  rules exaggerate the even-odd I differences in the oblate 
case, it is interesting to calculate the eccentricities e, one obtains using these rules. 
Figure 2 contains this effect for the l p  and Id  states. It is important to note that when 
e, < 1 the eccentricity of the elliptic caustic is the same for prolate and oblate cavities 
of identical p as well as the value of kj: The l p  and Id  states have a quite similar 
character in the prolate case of e,> 1. However the slopes are rather different in the 
oblate case. This interesting effect, which is also found with the uniform approximation, 
is obtained despite the mentioned shortcomings of the primitive W K B  method. 

( i i )  Uniform approximation ( E B K  1): the deficiencies of E B K  0 of leading to two 
possible ps disappear if one uses the phase of the E B K  solution corresponding to a = 0. 
That phase P ( a )  obeys a curious symmetry law: 

P ( a ) + P ( - a )  = 2 P ( O ) .  (34) 

Equation (34) is derived from (85) and ( 8 7 b )  of I ;  P ( a )  is expressed with the help of 
P A ( a )  and PS(a ) ,  plotted on figure 1 of I;  these functions obey (34). (It  may be of 
interest to note that such symmetry results from the parabolic shape of the top of the 
barrier. Analogous calculations with another shape (e.g. -C(x4)  give a phase which 
does not obey (34)). Hence the quantisation conditions for I ,  and I ,  are obtained by 
taking the mean value of the cases a = *m: 

I = n + i  I ,  = l + $  (even 1 )  (35) 

I , = n + i  I ,  = r + a  (odd I ) .  (36) 

A B t 

1.5 

eo 1 

l p  I d  1p I d  

0.5 I > 
1 2 

P 

Figure 2. ( a )  Eccentricities e ,  of the semiclassical states Ip  and Id calculated in the 
primitive W K B  method for oblate (B) and prolate ( A )  cavities as a function of I * ;  ( 6 )  
values of the action integrals, the circle corresponding to elliptic caustics, the cross to 
hyperbolic caustics. Note the discontinuities of the action for the oblate case. 
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We obtain the following expressions of ps:  

2(2n + 1 + 2 )  
[ ( 4 n  + 4 1 + f ) ( 4 n  p i  = 

The following inequalities are found when comparing the oblate and  prolate cases 
for the same n and I :  

ps prolate < p l  oblate for even 1 (39) 

ps prolate > p i  oblate for odd 1. (40) 

The motion with elliptic caustics persists for higher deformation in the oblate 
nucleus for even I ;  it is confined to a smaller interval of deformation for the odd-1 case. 

(c) Elliptic 'billiard': the discussion there is very similar to that of the oblate case. 
The symmetric case plays the same role as the even-1 case and the antisymmetric one 
that of the odd-1 state. Since this case is of little interest for nuclear physics the 
formulae for ps ,  kse,  p S h  are not given here but can be easily worked out using (21 )  
and the proper WKB phases in the quantisation rules or those of the uniform approxima- 
tion according to the rules given above and  in I .  

3. Quantum and semiclassical spectra 

In order to obtain, with good precision, all the single particle energies which are 
important in heavy nuclei, we have used the following method. By a scaling transforma- 
tion, different for the long and short axes of the ellipses, the boundary is transformed 
into a circle or a sphere. A basis of cylindrical or spherical Bessel functions which 
have zeros on the boundary are used to diagonalise the kinetic energy which contains 
an  anisotropic term. The matrix elements of this term are simpler expressions of the 
zeros of cylindrical or spherical Bessel functions. Details are given in the appendix. 
This method was first used by Moszkowski (1955). 

3.1. The cavity 

The energy spectrum of the even states of the cavity is plotted in figure 3. The value 
of (kR,,)' is plotted instead of (kf)' and the states are labelled as I n + l .  This spectrum 
has the overall character of a deformed Woods-Saxon potential. However there is a 
general behaviour which is followed by all the states but with a rate that depends upon 
n and 1. The single particle energy has a local maximum for p = 1 and one local 
minimum for each sign of the deformation. Typical cases are 2?,  4?, 23, 6?. However 
sometimes the three extrema are nearly equal to 1 and the chosen scale shows only a 
minimum ( O , ,  0 2 , .  . . O n )  or is such that the minimum is outside the figure (as for 
41,61, . . . l I ) .  For a few states the arrows indicate ps for the prolate case and the two 
values pse and @sh for the oblate case. These arrows indicate the places, or the regions, 
where a change of curvature occurs in the single particle energy curve. 
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0 1 ~  

300 r 

- 21 
01 

l o o t  

Figure 3. The complete quantum energy spectrum of the prolate and oblate cavities up to 
( k R 0 ) *  = 300. Only positive parity states are drawn. The arrows indicate the values of ps 
(prolate), pse and pSh (oblate) of table 1 for a few long-lying states. States are labelled 
as I , , , , .  

Figure 4 shows the single particle spectrum n = 1 and 0 S I S 8 where the even parity 
states are plotted beside the odd ones. The arrows now indicate the location of pS 
given by (25), ( 2 8 )  and (31). One sees here a striking property. The prolate spectrum 
is smooth as far as the dependence in 1 is concerned. The odd-Z levels can be smoothly 
interpolated from the even-1 case. The situation there is entirely different in the oblate 
case where the odd levels cross the even. This behaviour can be traced to the difference 
in the barrier effects for even and odd states. Indeed the barrier has a maximum for 
e= 7r/2 which separates two minima. A similar difference in the spectrum is also 
found for a Buck-Pilt potential as found out by Touchard (1985). It is represented in 
figure 5 .  

In order to provide a more complete investigation of this even-odd effect let us 
compare the spectra of an oblate cavity to that of a prolate one each for p = 1.5. (All 
the single particle states in the energy region are considered.) It is important to see 
that the density of states exhibits a large difference: there are 43 states in the prolate 
nuclei and only 26 in the oblate ones. This number characterises the well known fact 
that the L, = 0 states lie higher in energy in the oblate system. This effect is amplified 
by the fact that the odd states lie even higher. 

The semiclassical method explains almost entirely this behaviour, even in the frame 
of the primitive W K B  method. The energy spectrum with this method can be seen in 
figure 6 .  On the other hand, in figure 7 the quantum value of (kR,)* for the lg  level 
is shown for comparison with the E B K  0 and E B K  1 values. The E B K  0 shortcoming for 
the oblate case is obvious here. The uniform method E B K  1 provides better energies 
in general and is able to fill the gap between the separatrix Se and S,, .  In  spite of the 
fact that the vertical scale used in figure 7 slightly amplifies the disagreement of the 
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R > / R ,  
oblate 

R,IR, 
p r o l a t e  

Figure 4. The quantum energy levels of all states n = 1 of the cavity. The arrows indicate 
the values of p s  (equation (25)) for the prolate cavity, (30) and ( 3 1 )  for the oblate. 

primitive W K B  method the only region where the uniform approximation is needed 
absolutely is the interval (pSe ,  pSh). 

Figure 8 is the plot of Yq(e, e,) and Y<(e, e,) defined in (12) and  (13) from the 
integrals ( 7 )  and (8). It is indeed simple to represent a section of the energy-action 
surface at  a constant energy. Only the prolate situation is analysed there. The arrows 
indicate the directions in which the lattice points are located. For a given p the point 
e,  is found by the intersection of the represented curve and a straight line drawn out 
from the arrow. The behaviour of every single particle level is explained by noting 
the coordinates of different intersection points. A general behaviour is observed: the 
surface leaves regions of high I ,  for the regions of high lE when p increases. The 
separatrix is represented as a dotted line. For example the 2g state is very near to its 
separatrix for p = 1.2 (1.209 from table 1). 

Most of the structure of the spectrum is explained by the curvature and the 
displacement of the energy-action surface and by the scales of the actions. 

There are, finally, small disagreements between EBK 1 and the quantum spectrum. 
To our knowledge it is difficult to explain them qualitatively in a semiclassical language. 
Table 2 illustrates in a quantitative way the difference between the semiclassical results 
and the quantum ones. Typically the differences are 0.5% in this table as well as for 
most of the levels considered in this paper for the ‘billiard’ as well as the cavity. 
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2 1 2 
R , / R ,  R,/R, 
oblate p r o l a t e  

Figure 5. Same as in figure 4, but where the cavity is replaced by a Buck-Pilt potential 
which takes an ellipsoidal deformation (from Touchard 1985). The energy scale is in MeV. 

3.2. The ‘billiard’ 

As previously stated, this case has been done for completeness. Results were already 
given by Keller and Rubinow (1960) for a single value of the deformation p = 1.1547 
( e  = 0.5). We produce here the complete variation with p for 1 S p s 3 for the symmetric 
and antisymmetric states which correspond to an even angular momentum (see figures 
9 and 10) (cases A and B of the appendix). The semiclassical energies were calculated 
only from E B K  0 in figures 11 and 12. By comparing figure 6 with figures 11 and 12 
one sees that there is indeed a strong similarity in the manner in which the separatrix 
is crossed in the oblate cavity and in the billiard box. In both cases it is the same 
uniform approximation with the same phase calculated in I which is needed. Figures 
11 and 12 also provide an illustration of the domain where elliptic or hyperbolic 
caustics are found for each quantum number. Figure 13 shows how the states are split 
into two components in the uniform approximation in a particular case with a high 1. 
Such a splitting is, of course, not produced in the oblate cavity. 

4. Partial wave analysis 

It is interesting to perform a partial wave analysis of the wavefunctions of the cavity 
in order to study a possible connection between the spreading of the partial waves 
and the spread of the classical angular momentum. 
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Figure 6. The complete energy spectrum of the cavities up to (kR,)* = 300 calculated with 
the primitive semiclassical method. The broken curves represent when the classical caustics 
are elliptic, the full curves when they are hyperbolic. The gaps in the oblate case are 
explained by the discontinuities of the action integrals represented in the upper part of 
figure 2. 

If a and  b are, respectively, the long and  short semi-axes of an elliptic caustic the 
classical limits for the angular momentum L, are 

k b s  L c s  ka. (41) 

For a spherical cavity a = b and there is no  dispersion for the values of L,. When p 
increases a spreading of values of L, occurs in the above interval. The lower limit kb 
is zero when the motion belongs to the separatrix. For higher deformations the caustics 
are hyperbolic and (41) is replaced by 

O S  L c s  ka. (42) 
The signature of the separatrix is clear in the classical language: it occurs for those 

conditions where the lower limit of L, is zero for the first time. 
It is interesting to apply such a criterion to the spread of the 1 values of the quantum 

wavefunctions. Let I+), be any given eigenstate of the cavity that is followed as a 
function of p and for which we can make the partial wave analysis 

( r ' l + ) g  = x l n A a n A A n A j A ( a n A r ' ) P A  (cos e')*  (43) 
The basis of spherical Bessel functions and the change of scale defined in the appendix 
have been used here. The distribution of the angular momentum A in the wavefunction 
I$), can be studied by considering the sums 

(44) 2 b, = z n  I G A I  

The histograms corresponding to a sample of values of p in the interval (1.2, 2.4) 
are shown in figure 14 for the level n = 1 ,  I = 10. The semiclassical limits, calculated 
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7 0  

60 

IkR,)*  

4 0  U 
2 

R,IR, 
oblate 

I I I i I I I l l  

R,/R, 
prolate 

Figure 7. The semiclassical energies of the Ig state as  a function of I.( using the quantum 
equation (Q: full  curve), the W K B  method primitive ( E B K  0: broken curve) or the uniform 
approximation ( E B K  1 :  chain curve). The coordinates of the points marked S, S,. S,, can 
be read in table 1 for the lg. 

with the help of (41), are represented by the arrows; the numerical values of bo are 
also given. The distribution of the b, is such that b, = 8, for p = 1; it spreads when 
p # 1, in principle, to all values of A. However, it is found that bo becomes sufficiently 
large, say 

The histograms of b, for the 18 first excited states of the prolate cavity with p = 1.5 
are represented in figure 15. The preceding behaviour of the distribution of the b, 
applies to all of them. It is remarkable that the component bo is important only for 
the states, noted with an  H, which possess a hyperbolic caustic in the semiclassical 
theory. 

only in the vicinity of ps = 2.065. 

5. Conclusions 

The aim of this paper was to look for possible traces in the quantum spectrum of the 
organisation of the classical phase space and its evolution with deformation. As 
emphasised in the preceding paper and in § 1 the main interest of the systems that we 
studied is that we have three different quantum realisations of a single classical situation 
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I I I I I 1 > 
0 0 . 1  0 . 2  0 . 3  0 . 4  0.5 

I t  l k R ,  

Figure 8. The energy-action surfaces are represented for p = I ,  1.2 and 2 by their intersection 
with the plane kR, = 1. The broken curve shows where the surface meets the separatrix 
for various values of p. The arrows indicate the direction in which the semiclassical actions 
corresponding to the levels considered can be found. 

Table 2. The values of (kR0) '  for the two components of the doublet generated from the 
state n = 1, I = IO of the 'billiard'. The upper figure corresponds to the symmetric component 
(type I ) ,  the lower one to the antisymmetric. The separatrix is found for ps = 2.205 in 
EBK I .  On the other hand, in EBK 0 we have pse = 2.025 while pSh = 2.452 for the symmetric 
component and pSh = 1.774 for the antisymmetric case. These values explain why there 
are three levels for p = 2 in E B K  0 and only one for p = 2.2. 

1 

1.2 

1.6 

160.91 5 5  

170.103 1 
149.6909 
163.2567 
135.8108 
155.4318 
118.9417 
147.2758 

2 

2.2 [ 
2.5 { 
3 

~ 

208.4094 
204.9060 

162.7584 
162.7584 
170.3125 
missing [ 162.1716 
130.9285 
153.6399 
144.4835 
145.2245 
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S y m m e t r i c  s t a t e s  (even I,) 
\141 

i o  O1 21 2 1 2 3 

P 

Figure 9. Quantum energy levels of the ‘billiards’ up to (kR,,)’ = 300. 
with even L, are shown. 

The symmetric states 

with a separatrix. There is clear evidence of the crossing of the separatrix in the billiard 
problem. We feel that this evidence is also very striking in the even-I, odd-I differences 
for the oblate cavity. We have suggested that a similar effect exists also in the case of 
the Buck-Pilt potential in spite of its non-integrability. On the other hand, the crossing 
of the separatrix for the prolate cavity produces only a slight change in the curvature 
of the single particle energies that is observed for the even-I as well as for the odd-I. 
Nevertheless this event has important consequences in the partial wave analysis of the 
wavefunctions. 

The discussion of this paper has been limited to Lz = O .  Its extension to other 
values of L, implies the consideration of non-planar trajectories. There the difference 
between the prolate and the oblate cavities is even more striking because one can show 
that the separatrix disappears in the prolate cavity (Arvieu 1985). A discussion of this 
case is in progress. 
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A n t i s y m m e t r i c  states leven L z l  

141 , 161, 

Figure IO. Same as figure 9 but for the antisymmetric states with even L;. 

(1) ‘Billiard’ problem: let us define the boundary of the ‘billiard’ by 
x2 y 2  -+-=I 
R: R: 

and let us perform a scale transformation by 

The wave equation becomes in the new variables 

*. h 2  
2m 2m 

-- 

The ‘radius’ R is defined by 
2 1 1  +-. 

R ~ - R ;  R: 
The operator in (A3) is then written as 

H = H , + H , .  
The unperturbed wavefunctions Inm) of Ho are written as 

C#J,,,, = ( r ’ )  nm) = And,,, (U,,,/) eim”. 
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S y m m e t r i c  states (even I,) 

(0 .141  

(0.121 

(0.10) 

(0 81 

(0.6) 

1 0 . 4 )  

(0.21 
(0.01 

1 2 3 
P 

Figure 11. The levels represented in figure 9 are now calculated using the primitive 
method. States are labelled here by the quantum number /,,+, for + = 1 and by ( n ,  
the region after the separatrix. 

W K B  

I )  in 

l,,,,, is defined as the nth zero of the cylindrical Bessel function J , , , (p ) ;  a,,,,, is related 
to it by 

a n ,  = l n m l  R (A6) 
while the normalisation factor A,, is equal to 

The basis 4,,, is now used to calculate the matrix elements of H,  . However we should 
form four partial bases according to the parity of the states under reflection with respect 
to Ox and Oy 

(a) rx = +1, rV = +l; the states are denoted by (A ;  nm)  with m even and positive: 

IA; no) = InO) (A8) 

IA; n m ) = - ( l n m ) + l n  Jz - m ) )  m > 2. (A9)  

(b) T, = -1, T,, = -1; the states are denoted by IB; nm) with m even positive and 

1 

m 3 2 :  
1 

(A101 IB; nm) = - ( l n m )  - In - m ) ) .  Jz 
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Antisymmetric states (even L, 

-11.91 

1 1 . 7 )  
100 

Io 21 L’-Li - 

1 2 3 
P 

.31 

. 1 i  

Figure 12. Same as  figure 11 but for the antisymmetric states. To be compared to the exact 
spectrum of figure 10. 

I 

IkR, l 2  

1 

c 
0 S. 5. separatrix 

l l a l l l l , l l l l l , ,  

p = R > I R <  

Figure 13. The splitting of the levels n = I ,  I = 10 is calculated in the uniform approximation. 
Points where the separatrix is crossed are  indicated by S- and  S,. Since the levels almost 
coincide with the exact quantum levels these last results are  not shown in the figure. 
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0 - L  1 

1.6 
i / -  bX10-' 

0 4 1  I I 1  .I 
1 

> 

Figure 14. Distribution o f  the bA (equation (44)) with A for the state n, = 1, I = 10 of prolate 
cavities of deformations F = 1.2, 1.4,. . . ,2.4. The vertical arrows indicate the limits (41) 
or (42) calculated semiclassically. The value of bo is explicitly given, and pc = 2.065. 

( c )  n-, = -1, n-,. = + l ;  the states are denoted by IC; n m )  with m odd and positive: 

1 
IC; nm)=-( lnm)+In-m)) .  (A1 1) Jz 

(d )  n-., = +1, n-, = -1; the states are denoted by ID; nm) with m odd and positive: 

(A121 
1 

ID; nm) = -(inm) - In - m ) ) .  f i  

We define a parameter a by 

~ f - ~ f  
R:+ R:' 

a=- 

Using various recurrence relations between Bessel functions and their derivatives we 
can obtain (in units of h'l2mR') 

7 .  
5 5  , nm n"+2 ( n ' m  + 21 H , l n m )  = 2 a ( m  + 1) 

l i m  - 5 i j m + z  

For m = -1 and n'= n we should replace (A14) by 
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0 2 4 6 8  

Figure IS. Distribution of the 6, with A for the 18 first excited states with p = 1.5.  The 
states are denoted by I , , + ,  e or h depending on the semiclassical caustics. The arrows have 
the same meaning as in figure 14. 

We can write the four submatrices of H, in the basis a, b, c and d using (A14), (A15) 
and the symmetry properties 

(n ’ -m’ lH, In  - m ) = ( n ’ m ‘ l H , l n m )  (A16) 
(n‘- m - 21H,ln - m )  = ( n  - mlH, ln’ -  m - 2) 

= ( n ’ m  + 2IHlnm). (A17) 
Since the unperturbed eigenvalues of H,, are simply l:,,, (in units of h2/2mR2) it 

is consistent to take all the n and I which are such that the ln, are below a certain 
value in order to define a convenient basis which can be used to diagonalise H,,+ H, . 

In the numerical calculation performed in this paper all the zeros below the first 
zero of Ja were included (140 zeros), among them 15 zeros of Jo,  14 of J 2 ,  13 of J4, etc. 

(2) Cavity: the ellipsoid is defined by 

and the scale transformation as well as R are defined by 

3 2 1  +:. 
R ~ - R :  R ,  
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The perturbation is now written in terms of a zero component of a tensor of rank two 

H 3 h 2  R:-R; (4 - t A‘). 
2m R:+2RI d z  1 -  

We now use instead of (A5)  the following basis or eigenstates of L, with m = 0: 

( r ln l )  = Anlj,(an,r’)P,(cos e‘). (A221 

id() = ( T / ~ O ” ~ J ~ + ~ / ~ ( O  (A23) 

a n 1  = 5n1+1/2/R (A241 

The j ,  are Bessel functions, the zeros of which are denoted by 

Using the property 

1 a2 
- - jr( kr) Pl(cos 6) 
k2 az2 

as well as properties of integrals of the Bessel functions one obtains the matrix elements 
of the tensor operator T2, defined by 

a’ 
20 - az’z 3 (A271 T - - - l A t  

in the basis (A221 extended to all eigenvalues m of L;:  

( 3 m 2 - I ( I +  1 ) )  2 5:1+1/2 

2 5n l+ l /25n’1+5 /2  I ( ( /+  112-  m 2 ) ( ( l + 2 ) 2 -  m )I 

(n‘lmlT,,jnlm) = &,,,-- 

(n’l+2mlT2,(nlm)= -7 

3 R 2  (21-1) (21+3)  
2 1/2 

(A29) 
5 n l + l / 2 -  5 t t l + 5 / 2  [(21+ 1)(21+5)]”2 

The matrix of H is decomposed into two submatrices according to the parity ( - 1 ) .  
Again the classification of the unperturbed states by the values of S’,,,,? is necessary. 

The calculations reported in this paper correspond to a basis of 86 states of positive 
parity (12 states I = 0, 1 1  states I = 2, etc, up  to 4 states I = 20) and 78 states of negative 
parity (12 states I = 1 ,  etc, up  to 4 states I = 19). This calculation would correspond 
in the usual nuclear shell model language with harmonic oscillator wavefunctions to 
24 shells of the harmonic oscillator. 

(3 )  Accidental degeneracies: the quantum spectrum that we have calculated and 
which is represented by figures 3, 10 and 1 1 ,  exhibits a certain number of crossings. 
Since we have not found out an analytic formula, the real existence of these crossings 
does not rely upon a theoretical analysis. It is, however, possible to show that the 
levels of a separable system may cross. We have been able to prove numerically the 
existence of a few of our crossings. However an analysis such as that given by Berry 
on the crossing of the triangle is still lacking and is not included in our study. 



1136 R Arvieu and Y Ayant 

References 

Arvieu R 1985 Proc. topical meeting on ‘Phase Space Approach to Nuclear Dynamics’ ICTP, Trieste ed M di 

Ayant Y and Arvieu R 1987 J. Phys. A :  Math. Gen. 20 397-409 
Carbonell J 1983 These de 3 ime cycle Universiti de Grenoble 
Carbonell J,  Brut F, Arvieu R and Touchard J 1984 J.  Physique Coil. 45 371-8 
- 1985 J. Phys. G: Nucl. Phys. 1 1  325-42 
Ford K W, Hill D L, Wakano M and Wheeler J A 1959 Ann. Phys., N Y  7 239-58 
Keller J B and Rubinow S I 1960 Ann. Phys., N Y  9 24-75 
Touchard J 1985 private communication 
Moszkowski S A 1955 Phys. Rev. 99 803-9 

Toro, W Norenberg, M Rosina and M Stringan (Singapore: World Scientific) p 509 


